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Displacement and curvature effects in a wall jet 

By ANN L. CLARK AND E. J. WATSON 
Department of Mathematics, University of Manchester 

(Received 1 April 1971) 

This paper presents a solution of the second-order boundary -layer equations for 
the two-dimensional case of a wall jet on a curved surface. The outer flow is 
obtained by means of a conformal transformation, and general solutions for the 
displacement and curvature effects are given both as series and as integrals. These 
solutions are applied to symmetrical flow over a parabolic surface, the wall jet 
being either outside or inside. 

1. Introduction 
The second-order equations for viscous flow at high Reynolds number were 

obtained by Van Dyke (1962) from the method of matched asymptotic expan- 
sions. So far there have been few full solutions of these equations, and these have 
been surveyed by Van Dyke (1969). The study reported here was undertaken in 
order to  provide a complete solution of the equations in a specific case and to 
compare the importance of the displacement and curvature effects. 

The problem chosen for this purpose is that of the two-dimensional flow 
produced by a wall jet on a curved surface. The advantages of this choice are first, 
that the outer flow is at rest to first order so that the second-order flow may be 
obtained by potential theory and in particular by conformal transformation; 
second, that the first-order boundary layer has an analytical solution, perturba- 
tions to which satisfy equations that can be reduced to hypergeometric form. 

The wall jet in this problem is supposed to be produced by blowing tangentially 
along the surface in opposite directions from narrow slits. The boundary layers 
thus formed draw in fluid from their surroundings and this entrainment drives 
the second-order outer flow. This outer flow and the curvature of the surface 
cause the second-order perturbations to the boundary layer that are described 
by the title of this paper. 

As introduced by Glauert (19561, the wall jet is a steady flow which satisfies the 
first-order boundary-layer equations for an incompressible fluid, namely 

with the conditions 

(3) 
- -  u = v = O  at E = O ,  5+0 as E-tco. 

24 F L M  5 0  
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Here Z, ;iE are curvilinear co-ordinates along and at  right angles to a fixed surface, 
ii, V are the corresponding velocity components, and v is the kinematic viscosity 
of the fluid. 

This flow is characterized by the quantity 

where $ is the stream function defined so that 

ii = aqlaz, v = -a?laa, $(s,o) = 0. ( 5 )  

The constancy of F follows from the equation 

which is a consequence of (l), (2) and (5). 
Glauert obtained a similarity solution of the equations in the form 

- 
1c. = (40vm*f(7),  (7) 

7 = $ ( ~ O F / V ~ ~ ~ ) ~ E ,  (8) 

where f(7) satisfies the equation 

f” +ff” + 2f’2 = 0, 

f(0) =f’(O) =f’(to) = 0. with 

The numbers in (7) and (8) have been chosen so that the appropriate solution of 
(9) has f(co) = 1,  and then 

f(7) = s2(r) (11) 

where 9’ = -g3), (12) 

from which 

In the later parts of this paper, integrals involving f or its derivatives may often be 
evaluated by taking Glauert’s variable g as the variable of integration. 

The general equations for the fist-  and second-order terms in both the outer 
and inner flows are given by Van Dyke (1962, 1969)’ together with the necessary 
matching conditions. These terms represent successive approximations in the 
limit R --+ co, where R is a Reynolds number for the flow. In  the case of the wall jet 
we introduce a length scale I for the surface over which the jet flows, and the 
characteristic velocity in the boundary layer is then 

U, = ( 4 0 F / ~ l ) * ,  (14) 

R = (4OFl/v3)4. (15) 

which leads to the Reynolds number 

For the outer flow we use Cartesian co-ordinates (Z, 8) = (Zx, Zy). There is no 
first-order flow and we can write the second-order velocity as R-i U,  V and take the 
pressure as R-lpUEP. Then V, P satisfy the ordinary inviscid equations 

(V . V)V = -grad P, div V = 0. (16) 
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Since the flow is at rest at infinity we can introduce a velocity potential R-3Ucl@ 
and a stream function R-9U,ZY such that 

(17) 

5 = Is, 7 i  = R-$In, Ti = U,u, V = R-*U,v, @ = R-BU,l@. (18) 

The pressure is taken as pU:p. The dependent variables are expanded in powers 

(19) 
of R-*, so that 

and Van Dyke’s equations are then obtained as the coeEcients of the various 
powers of R in the Navier-Stokes equations with s, n as independent variables. 

The first-order velocity components (ul, vl) satisfy the dimensionless forms of 
(1) and (2), and the first-order pressurep,is constant. The matching conditions are 

V = grad 0 = curl (Yk), P = P, - $V2. 

In the boundary layer the variables are made dimensionless by writing 
- 

u = u,+R-h,+ ..., etc. 

lim u1 = 0, c ( s )  = lim (vl - n av,/an), (20) 
n-m n-oo 

where Vn(s) is the component of V normal to the surface, evaluated at the surface. 
Glauert’s solution takes the form 

(21) I +I = S W ) ,  7 = &-‘n, 

u1 = &-$j ’(y), v1 = - *s”(f- 37f’). 
The second-order boundary-layer equations involve the curvature of the 

surface, which is written as Z - - ~ K ( S ) ,  where K(S)  > 0 if the surface is convex to the 
flow. These equations are 

and are to be solved for u2, v2, p 2  subject to the no-slip conditions 

u,=v,=O at n=O (25) 

u2-+V,(s), p 2 + 0  as n-+co, (26) 

and the matching conditions, which for the present problem are 

where V,(s) is the tangential component of the outer flow V at the surface of the 
body. The remainder of this paper is concerned with the solution of these equa- 
tions in the case when the first-order flow is given by Glauert’s similarity solution. 

2. Outer flow 
It will be assumed that the wall jet is two-sided and symmetrical, having the 

same strength .F on each side. From (20) and (21) the boundary condition for the 
outer flow is then Vn(s) = -@la. (27) 

24-2 
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The surface is assumed to extend to infinity, in order to avoid the complication of 
boundary layers colliding on the far side of a closed body, and we need to deter- 
mine the potential flow and in particular the function V,(s) in view of (26). 

Since the region of flow extends to infinity it is convenient to derive it from a 
half plane by means of a conformal transformation. We write z = x + iy for the 
physical plane, 2 = X + i Y for the transformed plane, and assume that 

m 

0 
2 = F ( 2 )  = Zf,Z. (121 < R*), 

where the region of flow is the image of Y > 0 and the points at  infinity corre- 
spond. Without loss of generality we can suppose that the wall jet is at z = 0 and 
that t,his corresponds to 2 = 0 so that f 0  = 0. The function F ( 2 )  is regular and 
F’(2 )  + 0 in Y >/ 0, though there may be singularities in Y < 0. On the surface 

ds = ldzl = IP’(X)I d X ,  (29) 

so that s = S ( X )  = { F ’ ( X ) P T ) ) * d X  !: 
with s having the sign of X .  If we consider the function 

we can extend the function S ( X )  into the complex plane as 

(F‘ (2 )  B’(Z))* dZ. 

Then S(Z) is regular in 121 < R* and is real for 2 real. Near 2 = 0,  S(2) - IfllZ. 
The singularities of S(Z) in Y > 0 are where P(2)  is singular or P’(2) = 0. 

The complex potential 
w ( 2 )  = @ ( X ,  Y )  + i Y ( X ,  Y )  (33) 

Y X ,  0) = sgn (XI Ifl(X)I+ (34) 

with dw/dZ-+O as IZI-+oo in Y > 0. (35) 

is regular in Y > 0 and satisfies 

The condition (34) is satisfied by the function 

Hence 

(36) 

(37) 

where w 2 ( X )  is real for real X .  It is convenient to express the tangential velocity as 

W) = UlW + U2(S), (38) 

(39) Ul(s) = - <Dl(X, 0) = - sgn (s )  - Is]-9. 
ds 4 

where 

Then Ul(s) is the displacement flow due to a wall jet on a plane surface and U,(s) is 
the additional flow caused by the curvature of the surface. The series solution of 

d J2+ 1 
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the second-order boundary-layer equations in 0 3 requires U,(s) to be expressed as 
a power series for small s, but the actual values of U2(s) are needed by the integral 
method of $4. 

The flow in the 2 plane may be produced by a sink distribution along the X axis, 
the sink strength in an element dX being 

2 d Y  = @9(X) l -bS ' (X)dX 

when allowance is made for flow on both sides. Thus if Y 

If the 2 plane is cut along the negative real axis this result can be expressed in 
terms of contour integrals passing above (C,) and below (C-) the cut as 

where 2 lies above both contours. If C+ is moved across the pole at  2, = 2, an 
addition is made of 

Hence for 2 real, or 121 small, (42) gives dw,/dZ with 2 lying between the con- 
tours. For 121 small, we can expand in powers of 2 to  get 

t ( 4 2  -t 1 - i) 84 (2) syz) = - aw,/az. 

where, after integrating by parts, 

Thus 

where the coefficients dn can be calculated by use of the power series for S ( X ) ,  
since s = S ( X ) .  

If 2 = X is real we have similarly 

If the surface is symmetrical about the normal at the position of the wall jet then 
X(X) and U,(s) are odd functions and 

Similarly, if C, and C- are divided symmetrically into L,, R+ and L-, R- we have 



where (49) 

By taking R, as a contour from 0 to 00 passing above the pole at  2, = X, a,nd 
removing the singular part of the integrand, we find that 

,{S*(X,) -S -qX)  - pqx) Xf(X) ( X , - X ) } d X ,  
I+ iJ  = som (X& ) 

-~X-2S~(X)+~X-1S-~(X)X‘(X)  (I.-&7ri). (50) 

The contribution of J to U,(s) is therefore 

& / 2  + 1 )  S-)(X)  = - U1(S), 
and so 

x1 (sqx,) - S f ( X )  - p q x )  X’(X) (X, - X)) ax, 4x U s )  = - (1 77X’(X) 0 (X?-X2)2 

- 4x-2Sqx) +*x-ls-n(x) s ’ (X) ) .  (51) 

3. Second-order boundary layer : series solution 
We now have to solve (22), (23), (24) with u,, v1 given by Glauert’s solution and 

p r  = 0, subject to the conditions (25) and (26) with %(a) given by the analysis of 
$2.  The continuity equation (24) is satisfied when the velocity components up, v 2  
are given in terms of the second-order stream function @, by 

U, = a$2pn, v2 + K n v l  = - a$,las. (52) 

After solving for p z  we can write (22) in terms of the stream function as 

@gnnn- @1n$2ns- @2n@1ns + @ls+znn + @2s@lnn = -H(s ,  n),  (53) 

a 
where ~ ( s , n )  = K ( S )  ( @ I n n  + n @ I n n n  + $ I n  +Is) + 5 ( K ( S )  1: @;n an) 

co 

= K ( s )  n@lnnn + K t ( S )  1 
n 

= fl,S-* ( K r r ( r )  + 8SK’g’2(r ) ) .  (54) 

We first consider the variation in Glauert’s integral due to second-order effects. 
Since u2-+F(s) as n+m, we must modify the integral and write 

J-; @u(u-R-q(s)  +O(R-l))dn 

= s,” $,u;dn + R-4 IOm ($2u$ f 2@,u,u, - @,ulV,) d n  + O(R-l) .  ( 5 5 )  

Here 
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= som @(K7ff”’ + 2 S ” f ‘ ’ )  dq + $8-4 &(S) 
= s-i(+(s) ++SK’(s))  + is-4 &(s), (58)  

(59) 

which integrates to give 

1; ($2u~+~$lu1u2)  dn = +$K(s) +- 4 s - t~ , ( s )ds .  
m ‘I 

Since V,(s) = -&,hi?+ 1)s-2+;r:dns” for smalls, 
0 

(60) 
/ s - t& (s )  ds = ( 4 2  + 1) s-i + 2 dn sn+l+ constant, 

0 n+u 

and it is convenient to assume that the constant of (60) is absorbed into the first- 
order term by redefinition of the invariant F. Thus in terms of the physical 
variables 

= 1 + IOR-4 {$sfr(s) + g(J2 + 1) 8-4- 2 

When 7 is used as independent variable in place of n and the first-order solu- 
tion (21) is inserted, (53) becomes 

with the boundary conditions 

+2 = a$2pT = o at  7 = 0, a$2p7+4~%q(s)  as q-+co. (63) 

Following Van Dyke, the solution of (62) can be broken up into a displacement 
effect and a curvature effect. We write 

where 
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(67) I m = - 1  7 c ,  = - ( $ + 1 ) ,  
and m = n-1 *, c ,  = 4dn (n = 0 , 1 , 2  ,... ), 

and for $c they are m = 0, 1 , 2 ,  . . . , but it will be of use for the integral solution to 
discuss the functions x,, 9, for general values of m .  The equations to be solved are 

x ~ + f x ~ - ( 4 r n - - ) f ‘ ~ : , + 4 ( m + l ) f ” ~ ,  = 0, (68) 

(69) $;+f&-(4m- l)f’q5;+4(m+ l)f”qjm = -4(r,f”’+8mg‘2), 

with the boundary conditions 

Equation (68 )  arises in Riley’s (1962) study of the decay of perturbations to a 
wall jet in which he showed how it can be reduced to a hypergeometric equation. 
One solution of (68)  isfl(7;)), and the transformations 

(72)  

(73)  

1 Xrn(7) = f ‘ ( ~ )  4~), 
g‘(7;)) = ( 1  - Q(6), 6 = g3, 

lead to [(l -6) R”+ ($-$[) Q’ -5(4m+ 3 )  R = 0,  

which is a hypergeometric equation in which the parameters are given by 

u + b  = 8, ab = Gm+2, c = 5. 3 

Equation (73 )  has solutions Q = F(c ) ,  G ( 5 )  where 

F(6)  = F(a,b; 1 ;  1 - 6 )  

(74)  

C, = $(n+u)+$(n+b)-2$(n+1). 

The general solution of (68) is therefore 

(77)  

The boundary conditions in terms of 5 are 

(79) I xm-+O, C’dXmldC-tO as C+O, 
( 1  - 6) dx,/dg-+ 1 as C+ 1. 

Hence C = 1, B = 0 and if we choose e2 = 0 then A = 0. Thus 
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This solution breaks down ifa or b is a negative integer and these cases provide 
the eigenvalues of Riley’s decaying perturbations. The first of these corresponds 
to a small change in Glauert’s F and this is excluded by taking the constant in (60) 
as zero. The higher-order perturbations are all more singular at s = 0 than the f i s t  
term m = - 1 of (67). These are associated with the method of production of the 
wall jet, and it is assumed that they have all decayed over a length scale small 
compared with the characteristic length 1 of the surface. 

A particular integral for q5, can be found in the form 

where 

= 7-  2@tan-l(g,/3/(q+2)). (82) 

On substituting in (69) and equating coefficients we find that 

] (83) 
a = - 2( 16m3+ 42m2 + 17m - 3)/((4m + 7 )  (m + 1) (2m + l)), 
/?= 16m(2m+3)/{(4m+7)(2mfl)} ,  h = 4/(4m+7). 

The complementary function Q(r) must therefore satisfy 

Q(0) = -a, Q’(0) = 0, &’(a) = - A .  (84) 

Q(7) is determined by the same method as xm but a modification is needed since 
Q(0) + 0. We thus obtain 

The second-order skin friction is 

and from (80) and (85) we find 

Similarly as n -+ m 
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We have seen that the case m = - 1 corresponds to the displacement flow when 
the wall jet is on a plane surface. Equation (68) is then a second-order equation 
for xL, and can be solved explicitly. It is easy to verify that 

x-Ar) = h-  5 ( f + T f ) ,  (92) 

I and so x”(0) = -3, 

X - ~ ( V )  - -+ - ( 5  + n/J3) as 7 --f co. 
(93) 

The values in (93) agree with (87) and (90) since a = 2, b = - 9. This case has also 
been treated by Plotkin (1970), and the analytical solution of Hayasi (1970) agrees 
with (92). 

The case m = - Q is also of interest. Here a = 1, b = 8 and 

x-*(T/) = h2f’ + h(4g3 - 3) -f+ 5yf’, (94) 

The constants a,@,h occurring in the expression for & are singular for 
m = -I 2 ,  - 1 and - 2  but of these only - 2  is an eigenvalue. In fact I $ ~  is not 
singular at m = - 8 and - 1, and has only a simple pole at  m = - I. 

particular integral 
Although m = - $ is an eigenvalue the function &(r) is not singular here. The 

P(r)  = 16g3+ (8h- 2r2 ) f ’  (96) 

satisfies all the boundary conditions, as does the complementary function 

&(r) = f+ rf‘. (97) 

Consequently $-&I) = P(T) +k&(r)  (98) 

is a possible solution for any value of k.  We can find the appropriate value by 
considering the limit as b+O of &(O) or &(co), since 

P”(0) = 0, Q”(0)  = Q, P(oo) = 16, &(a) = 1. (99) 

n 217 

2 4 3  18 
k = Qlog3+--- = -9.50. (100) The result is 

In  this case the radius of curvature is proportional to the boundary-layer 
thickness and so this is an example of what Van Dyke calls a ‘jointly self- 
similar ’ solution. This case was studied by Wygnanski & Champagne (1968) on 
the basis of a set of boundary-layer equations that agree with Van Dyke’s to  
second order, but differ at the third order. Wygnanski & Champagne looked for a 
similarity solution and obtained a generalization of Glauert’s equation (9). It 
might seem that their solution should agree to second order with that given above, 
but they imposed the same boundary conditions f(0) =f’ (O)  = 0, f(m) = 1 as 
Glauert, so that they would have k = - 15. An attempt was made to expand the 
solution of their equation, leaving f(co) arbitrary, in powers of the curvature 
parameter, but this gave indeterminacy at the first power and impossibility at 



Displacement and curvature eflects in a wall j e t  379 

the second power. A further examination of Wygnanski & Champagne’s equation 
is made in the appendix, where it is shown that it has no solution with 

f(0) =f‘(O) =f’(co) = 0 

that tends to Glauert’s as che curvature tends to 0. 
A more satisfactory treatment of this problem was given by Lindow & Greber 

(1 968). They also used equations that differ from Van Dyke’s at the third order 
but realized that the similarity variable may differ from Glauert’s. Their second- 
order solution agrees with (98) but they chose arbitrarily to take k = - 4314. 

m 

- 1  
- 0.25 
+ 0.75 

1.75 
2-75 

3.75 
4.75 
5.75 
6.75 

7.75 
8.75 
9.75 

X P )  
- 3  
+3.1590 x 10-1 

2.2744 x 
3.8887 x 
9.2835 x lo-* 

2.6883 x 
8.8681 x 10-6 
3-2193 x 
1.2587 x 
5.2246 x 
2.2787 x 
1.0364 x 

lim ( r  - x,) 
6.8138 
4.3588 
5.9141 
6.5012 
6.8688 

7.1371 
7.3483 
7-5227 
7.67 I1 

7-8003 
7.9147 
8.0174 

TABLE 1 

m 
0 
1 
2 
3 
4 

5 
6 
7 
8 

9 
10 
11 
12 

420)  
- 0.73596 
+ 3.5746 

6.7380 
9.3788 

11.713 

13.842 
15.821 
17.684 
19.454 

21.146 
22.774 
24.345 
25.866 

$,(a) 
3.7580 
2.4490 
1.8392 
1.4835 
1.2490 

1.0820 
0.9566 
0.8587 
0.7800 

0.7152 
0.6610 
0.6148 
0.5750 

Although analytical solutions have been given for the functions ~ ~ ( 7 )  and 
+m(7), these are inconvenient for numerical calculation. Solutions were com- 
puted for us by Dr Ian Gladwell directly from (68) and (69) for ~ ~ ( 7 )  with 
m = -  1, - &  (1) and for +m(7) with m = 0 (1) 6 (2) 12. Tables and graphs of 
these functions and their derivatives are given in the first author’s M.Sc. thesis 
(Clark 1970). The values of xk(O), lim (7 -xJ, &(O) and &(m) thus obtained 
agree closely with those given in table 1, which were derived from the analytical 
expressions (87), (go), (88) and (91). 

4. Second-order boundary layer : integral solution 

solution of (62) by means of the Mellin transformation. Since the solution for 
The series solution (64) is useful only when s is small, but we can find a general 

v, = U,(s) = --k(d2+ l)s-% 

is already known we can suppose that in (63) V,(s) is replaced by U2(s), so that 
from now on the suffix d refers to the additional displacement flow due to the 
curvature of the surface. 

The Mellin transform of the stream function $2 is 
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and the same transformation applied to equation (62) gives 
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where 

is the Mellin transform of S K ( S ) .  The boundary conditions for (102) are 

$* = a$*/@ = o at 7 = 0, a$*/aq+ U*(T)  as r-too, (104) 

where 

The solution of (102), subject to the boundary conditions (104), is 

$*(', 7) = '*('I x-7-1(7) + K * ( T )  $-~-1(7)* (106) 

The transformation inverse to (101) is 

where c is chosen so that the integral converges. Consequently the displacement 
and curvature effects are given respectively by 

The results of $ 3  show that X - ~ - ~ ( V )  is a regular function of 7 except for simple 
poles at 

T = #n2+Qn-i  (n = 0,1 ,2 ,  ...), (110) 

and that $-7-1(7) behaves similarly except that n = 0 gives a regular point. The 
contour of integration must pass to the left of all these poles. Since the functions 
~ - + ~ ( 7 )  and $-T-l(7) are complicated, attention will be directed to the contribu- 
tions to the second-order skin friction, namely 

7d ,C(S)  = & S - ~ ( a z ~ d , c / a 7 2 ) 7 = , ,  (111) 

and to the outer limit function 

The simplest case is 

where 

and 
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As 171 -+a, except in a sector largT1 < E ,  X N ~ - ~ ( O )  is exponentially small. Con- 
sequently we can substitute the integral ( 105) for U*(r) into (1 13) and obtain, on 
reversing the order of integration, 

For r > s the inner integral can be evaluated by means of a large semicircle to 
the left and shown to be zero. Hence 

where 

= s-f/olfd(t) U2(st) at, 

In  order to evaluate fd(t) it is convenient to deform the contour of integration 
into a loop from infinity round the poles of the integrand, which are on the 
positive real axis. The substitution 

r = #(P- 49/36) 
then leads to 

where C is a path from mei(n-s) to meis in the upper half plane, and 0 < 6 < in. 
Since the integrand is an odd function of 8 the integral is ( - 2ni) times the sum of 
the residues at the poles 8 = i + n  for n = 0 ,1 ,2 ,  ... . Thus 

(121) 

The series (121) converges for It1 < 1 and rapidly unless 1 - It1 is quite small. 

fd(t) = - 1 "  ( - 1 ) m  3n ("1 (n + $) t W + % n d .  
8 0  n !  

In order to estimate the functionfd(t) when t-+ 1 we put 

t = e-h, 8 = </h 
and write (120) as 

For h-t 0 we can substitute the asymptotic forms for the I' functions and write 

2i sin (in - n</h) N exp (zni - ni</h). 

f d ( t )  N -- h-8 1 64 exp { - $ni + h-l (nit- $<z)))dc, This gives 

and the integral can be estimated by the saddle-point method, whence 

16r(B c 
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The outer limit for the displacement term is 

U s )  = lim {$&, q )  - 4sQ2(s) q} 
1+ 

1 c+ico 

2ni c-ia,  
= -J 1j*(7) lim {x-.7-1(7)-q}s-7ci7. 

7-f 00 

From (90) and (77) 

1 - z7-1(7)  -+ 3 1% 3 + (74243) + 1 + 27 + $(a) + $@), 

and as 171 -+a, a and b + a ,  so that (except in a sector 1arg71 < e) 

$(a)+$(b) = loga-ga-l-+fl-2+' 1 2 0 0  -4 + O(a-7 
+logb- &l-&b-2+l-b--4+O(b--6) 1 2 0  

= log ( - #T) + $7-1- 3 g T - 2  + 0(7-3), (126) 

after use has been made of equations (74). Consequently we can write 

lim { X - ~ - ~ ( ~ ) - T }  = -log(-843~)-(n/2,/3)- 1 - 2 y - A ( ~ ) ,  (127) 

where A(T) -+ 0 as 7-3- co. The contribution of A(7) to Ld(s) is, proceeding as with T d ,  

ll+m 

where 
C+im 

g&) = -7t-t A ( 7 ) t . d ~  
n?J c-ico 

c+im 
= - -. t-t J {$(a) + $(b) - log ( - QT)] t' d7 

7Tz c-ico 

The integral can be evaluated by considering the residues at 8 = & and n + ; 
(n = 0 , 1 , 2 ,  ...), with the result that 

4t-t O0 

gd(t) = Gt+ 3 (n +g) t*n2++4. 
0 

It can also be shown that 

+sf / ' {U2(s t )gd( t )+  0 (4/1ogt) (V2(s) -t-aU,(st))}dt. (131) 

The asymptotic behaviour of A(7) as r+co is obtained from (126) and may 
be used to infer the form of gd(t) as t -+ 1 by considering a large loop as the contour 
of integration. In this way it is found that 

g&) = 2 + (M) (1 - t )  + O( 1 - t ) 2 ,  (132) 
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and so the integrand in (131) tends to 3U2(s) - 4sU;(s) as t+ 1. 

The contribution of the curvature to the skin friction is 

7,(s) = +-+. - K * ( 7 )  #:T-l(o) s-‘dr. 
Bni Sctim c..-im 

383 

(133) 

Since, as will be shown, $!.T.-l(0) = 0(d) for large 171 it is convenient to write this 
as 

7&) = - 7 K * ( 7 )  (A7-1 #:7-l(o)) s-Tdr 

where 

and 

After a has been expressed in partial fractions, the method used for fd(t) gives 

fc( t )  = ---+- 17 5 (3 log3+Z+671)  t9 
28 108 J3 81 

t ~ n a ~ n ~ ,  (137) 

The behaviour offe(t) as t + 1 is again found by considering a large loop integral 
in the 7 plane. In  $LT-l(0) the term multiplying h in (88) is exponentially small 
so that except in [arg.z( < e 

W) F(a) r ( b )  a+expsmall 

= 16 3 r(4) ( - *7)3 (1 + S 7 - l  + o(+)), 

q5LT-l(o) = ---- r(%) r ( a  - Q )  r(b - 3 )  

W) 
( 1 - t ) 3  

3 ~ 3 )  

(139) 

(140) and hence = - (1 -%&(l- t )  + O(1- t)”. 

The outer limit of the curvature stream function is 

L,(S) = - K * ( 7 )  #-,-,(m) s-‘d7 

= sIo lK i (s t )  gc(t) dt, 

where gc(t) = 7-1 q3-‘-1(Co) t‘ d7 
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For large 171, except in I arg 71 < E, 

# - 7 - 1 ( ~ )  N 01 + p + (# log 3 + (n/2 4 3 )  + 1 + 2y  + $(a) + I)@)) h 
N - (log ( -  84%)  + (np43) + 2y+ B) (7-l- 2T-2+ .. .) +;T-'+ ... . (143) 

From this it follows that as t -+ 1 

g,(t) - (log (843/(1 - t ) )  + ( 4 2 4 3 )  + y + # )  (1 - t+ Q(1 - t ) 2 + .  ..) 
++z( l - t )2+ . . .  . (144) 

Table 2 gives numerical values of the functions fd,qd, f, and g, for 0 < t < 1. 

t 

0 
0.01 
0-02 
0.03 
0.04 

0.05 
0.1 
0.15 
0.2 
0.25 

0.3 
0.4 
0.5 
0.6 
0.7 

0.75 
0.8 
0.85 
0.9 
0.95 

0.96 
0.97 
0.98 
0.99 
1 

f d  

- 
1.00350 
0.68267 
0.53555 
0.44501 

0.38137 
0.21303 
0.13189 
0.08255 
0.05038 

0.02926 
0.00774 
0~00120 
0.00007 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

$62 

22.8035 
15.7378 
12.6486 
10.8274 

9.5966 
6.6038 
5.3175 
4.5663 
4-0612 

3-6926 
3.1816 
2.8373 
2.5857 
2.3916 

2.3099 
2.2361 
2.1691 
2.1079 
2.0518 

2.041 1 
2.0306 
2.0202 
2.0100 
2 

- 

TABLE 2 

f c  
-0'60714 
- 0.58753 
- 0.57416 
- 0.56243 
-0.55164 

-0.54151 
- 0.49647 
- 0.45656 
- 0.41934 
- 0.38372 

- 0.34900 
- 0.28027 
- 0'20933 
-0.13123 
- 0.03694 

+ 0.02217 
0.09626 
0.19794 
0.36083 
0.72607 

0.87706 
1.10390 
1.50026 
2.46598 
- 

Y C  

8.6631 
8.3807 
8.1883 
8.0196 
7.8649 

7.7197 
7.0796 
6.5228 
6.0169 
5.5478 

5.1079 
4.2958 
3.5508 
2.8498 
2.1724 

1.8367 
1.4994 
1.1573 
0.8053 
0-4340 

0.3556 
0.2749 
0.1911 
0.1023 
0 

5. Applications: flow over a parabolic cylinder 
The methods described in the previous sections have been applied to the cases 

in which the wall jet is placed at  the vertex of a parabolic cylinder, both outside 
and inside. If the length 1 is taken as the radius of curvature at  the vertex the 
surface has equation y = T &c2 in non-dimensional form, with the flow in the 
region y & i x 2  > 0. Suffices o and i will be used to denote the cases of flow outside 
and inside *he parabola. 

The conformal transformation from the half plane Y > 0 to the outside of the 
parabola is 

2 = P(2) = 2 - QiZ2, (145) 
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so that x = X on the parabola. Then 

P‘(2) = 1-42, F(2) = 1 +iz, (146) 

and hence S(Z) = So(Z) = s,” (1 +Z2)frd2 

= $-{Z( 1 + 22)fr  + log (2 f (1 + ZZ)fr)), 

S J Z )  = 2 + gzs- h25 +- o(27) 

(147) 

where the square root is real and positive for Z real and positive. The function 
So(Z) has the properties 

for Z-tO, and for Z+co 
(148) 

XO(Z) = gzZ+glog(22) + $ + & Z - Z - & 2 - 4 + 0 ( 2 - 6 ) .  (149) 

Also So(Z) is regular in the domain formed by cutting the 2 plane from i to ioo 
and from - i to - ico and does not vanish except at  2 = 0. 

For the inside of the parabola we introduce an intermediate 5 plane where 

2 = sinh (&rf;), 

z = 6+ &<2. 

The strip 0 c $c< 1 transforms into the upper half of the 2 plane cut from 
2 = i to ioo, and into the inside of the parabola cut from z = $i to ioo. Although 
each of the trmsformations (150), (151) is singular at = i, the combined trans- 
formation from 2 to z is not singular and the two sides of each cut join up. In  this 
ease we have 

and it is convenient to integrate in the <plane. From (150), X = sinh (&x) on the 
parabola. 

The coefficients for the outer flow were computed by numerical integration 
along a contour composed of straight line segments joining ih, (i + 1)h, h and + co. 
The integration program was written for us by Dr Ian Gladwell and was adapted 
for use in the later integrations. 

Since SJZ) is an odd function the flow on the outside of the parabola is given by 

where (154) 

The numerical integration was carried along the real axis until it was possible to 
estimate the remainder from (149). Dr Gladwell’s computations gave 

bol = 0.286819, bos = -0.107848, bob = 0.057011, (155) 

and consistent values were found for h. = 0*5(0.1)0.9. Since s = So(X) ,  we find 
from (148) that 

m 

(157) where dol = 0.286819, do, = -0.29906, do6 = 0,3752. 
25 F L M  50  
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The corresponding coefficients for flow inside the parabola were found by using 
5 as the variable of integration, SO that 

bil = - 0.141387, bi8 = 0.086582, bib = - 0.064795, (159) 

ail = - 0.348857, a,, = 0.18584, ai6 = - 0-1650. (160) 

K ( S )  = (1 + X 2 ) - 3  = K2nS2n, (161) 

and these gave the coefficients for U2i(s) as 

The curvature of the surface (positive for flow over the outside of the parabola) 
is 03 

0 

\ (162) 
where K~ = 1, K~ = - 1-5, K~ = 2.375, K~ = - 3.8042, 

K~ = 6.1210, K~~ = -9.8717, K~~ = 15.821. J 

In the following results the suffix f denotes the value for a flat surface, d the 
additional displacement contribution corresponding to U,(s) , and G the contribu- 
tion of the curvature terms for the outside of the parabola. The last of these 
changes sign when the inside of the parabola is considered. 

For the second-order skin friction 

T~ = &(42 + 1) 8-3 = 0.452665 8-8, (163) 

and from ( 157), ( 160), ( 162) and table 1 

(164) i 
r d 0 =  d( l .631  x 10-3-6-94~ 1 0 - ' ~ ~ + 8 * 3 ~  10-6~4+O(s6)), 

rdi = sf(-1*984x 10-3+4.31 x 10-5s2-33.7x lO4s4+O(@)), 

T ,  = s-*( -0*04600-0*63169~~+ 1.7387s4-3.762s6 

+ 7.442 - 14.05 s'O + 25.6 d2 + U(sl*)).  

The outer limit function L = lim (@2 - U,(s) n) gives 

Lt = (42 + 1) (5 + 7 ~ / 4 3 )  = 16.4500, 

Lao = sa( - 6.785+8*22s2- ll-Os4+O(s6)), 

La, = d(8*253-5*11 s2+4.85s4+O(s6)), 

L, = 3.7580 s - 2.759 a3 + 2.966 s5 - 3.64 S' 

+ 4 . 8 ~ ~  - 6.5 sl1 + 9.1 s13+ O(s15). 

These series are satisfactory for Is1 < 0.5, except for Ldo and Ldi, and the values 
thus obtained provide a check on those computed by the integral method of 94. 

The speed of the outer flow is given by (51), but for computational convenience 
the range of integration was divided into three parts and a partial integration 
carried out over the middle range to give 

(j-"""'dt+&.j- b S-qXt )  S ' (Xt)  --X-qX) S ' ( X )  dt 

6 = n X X ' ( X )  0 (t2-11)" (1 t2 -  1 
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where X ,  = X t ,  0 < a < 1 < b,  s 5 S(X). For the outside flow the first two 
integrals were evaluated numerically and the third estimated from the asymp- 
totic behaviour (149) of S,,(X). In  the case of the inside flow the further trans- 

(167) 
formation X = ainh   ST^), X t  = sinh (Qn@), 

X a  = sinh (Qnga), X b  = sinh (&if/?), 

was made and /3 chosen large enough for the third integral, which is exponentially 
small in 8, to be neglected. The results were checked by comparison with the 
series for small s and with the asymptotic behaviour for s + 00 which will now be 
described. 

When X -+ co in (51) the range of integration may be divided into (0, aXf) and 
(ax*, 00). In  the former we may expand (X! - X2)-2 in powers of X,/X and in the 
latter use the asymptotic form for S)(X,) as well as for S)(X). In  this way it was 
found, using (149), that for the outside flow 

I 

where 

+c1s-2 

+ (&,log (8s) + &,+ c2) s - ~  + O(s* logs), (168) 

c1 = - 's" X { S $ ( X )  - 24Xf[1+ &X-2(log ( 2 X )  + &)])dX, 
= o  

c2 = ; X3{S$(X) - 24Xf[1+ &X-Z(log (2X) + Q) 

+AX"( - 3(l0g ( 2 X )  + &)'+ I)]) dX. 
'Irn 

Numerical integration gave c1 = 0.09413, c2 = 0.2864. When the inside of the 
parabola is considered, the contribution of the range (0, ax*)  is exponentially 
small in terms of s and the remainder gives 

The leading term of (168) corresponds to taking the suction velocity &s-% to act 
on the axis x = 0, y < 0; the leading term of (169) to dividing the total inflow 
2s) by the channel width 22. 

After the programme for computing U2(s) had been tested it was used t o  pro- 
vide values of the integrands for rd and La. The integrands for rc and L, involve 

Where necessary the ranges of integration were divided in order to deal separately 
with the singularities at  t = 0 and t = 1. Values of UL(s), needed for the integrand 
for Ld at t = 1, were obtained by numerical differentiation. The variation of 
Glauert's integral as given by (61) was also computed from 

K,(s) = (1 + x')-$ - 3 5 ~ (  1 + x2)+. (170) 

4 = 15(42 + l ) d ,  

F, = ~ S ~ K ( S ) .  I 
A few of the results of these computations are given in tables 3, 4, 5 and 6. 

25-2 
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8 

0 
0.1 
0.2 
0.5 

1 
2 
5 

10 

20 
50 

100 
00 

Flat 

u, 
- 0 . 6 0 4 ~ 4  
- 3.394 
- 2.018 
- 1.015 

- 0.6036 
- 0'3589 
-0.1805 
- 0.1073 

- 0.0638 
- 0'0321 
- 0.0191 
- 0 . 6 0 4 ~ 2  

Outside parabola 
A c \ 

u z o  VtO K 

0,2878 - 0 . 6 0 4 ~ ~ 2  1 
0.0284 - 3.366 0.9852 
0.0551 - 1.963 0.9436 
0.1148 - 0.9002 0.7310 

0.1501 - 0.4535 0.4152 
0.1399 -0.2190 0.1642 
0.0908 - 0.0897 0.0385 
0.0544 - 0.0490 0.0127 

0.0360 - 0.0278 0.00427 
0.0185 -0.0136 0.00104 
0.01 11 - 0'0080 0.00036 
0.3548-2 - 0.25s-2 0.3549-4 

TABLE 3 

Inside parabola 

uzi Vti 
- 0.3495 - 0.604s-2 
- 0.0347 - 3.429 
- 0.0683 - 2.086 
-0.1553 - 1.170 

- 0.2454 - 04490 
- 0'311 1 - 04699 
- 0.3279 - 0.5084 
- 0.3090 - 0.4163 

- 0.2799 - 0.3437 
- 0.2374 - 0.2695 
- 0.2062 - 0.2253 
- 0.7078-2 - 0*7075-& 

S 

0 
0.1 
0.2 
0.5 

1 
2 
5 

10 

20 
50 

100 
00 

Flat  

71 

14.32 
0.4538-4 

5.061 
1.280 

0.4527 
0.1600 
0.0405 
0.0143 

0.00506 
0.00128 
040045 
0.453~-* 

Outside parabola 

?do 7, 7 0  

0.00163~2 - 0.04608-4 0.4538-8 

A 
( v 

0.00092 -0.1649 14.16 
0.00108 -0.1536 4.918 
0'00136 - 0.1900 1.091 
0.00157 -0.1652 0'2891 
0.00170 - 0.0797 0.0820 
0.00155 -0*0180 0.0230 
0.00119 - 0.00507 0.0104 

0.00078 - 0'00136 0.00448 
0.00038 - 0.00023 0.00143 
0.00019 - 0.00006 0.00058 
0.143s-9 - 0 . 6 9 8 ~ - ~  0 . 1 4 3 ~ 2  

TABLE 4 

Inside parabola 
& 

?di T i  

- 0.00198si 0.453s-5 
- 0.001 12 14.48 
-0.00133 5.213 
- 0.00166 1.468 

- 0.00194 0.6160 
- 0.00220 0.2375 
- 0.00228 0.0562 
- 0.00202 0.0173 

- 0.00158 0.00484 
- 0.00098 + 0'00053 
- 0.00062 - 0.0001 1 
-0.1779-1 -0.1778-1 

8 

0 
0.1 
0.2 
0.5 

1 
2 
5 

10 

20 
50 

100 
03 

Flat 

Lr 
16.45 
16.45 
16.45 
16.45 

16.45 
16.45 
16.45 
16.45 

16.45 
16.45 
16-45 
16.45 

Outside parabola Inside parabola 
A 

( \ -  

- 6.7852 3.768 16.45 8.25~2 16.45 
-0,1192 0.3731 16.70 0.1458 16.22 
-0.3872 0.7304 16.79 0.4818 16.20 
- 1.558 1.605 16.50 2.145 16.99 
-3.201 2.366 15.62 5.509 19.59 
-4.434 2.701 14.72 11.08 24.83 
-44.494 2.424 14.38 21.19 35.22 
- 3.745 1.990 14.69 31.65 46.31 
- 2.617 1.551 15.38 45.68 60.58 
-0.699 1.066 16.82 72.36 87.84 
+1*073 0.786 17-31 101.3 117.0 
+ 3.435% 9.30s-4 3.4394 7.9684 7.9684 

Llio Lc L O  L d i  Li 

TABLE 5 
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Flat Outside parabola 

S 

0 
0.1 
0.2 
0.5 

1 
2 
5 

10 

20 
50 

100 
co 

Ff 
36.2s-f 
64.40 
54.15 
43.06 

36.21 
30.45 
24.22 
20-36 

17.12 
13.62 
11.45 
36.2s-4 

F d O  

- 3.8298 
- 0.1193 
- 0.3246 
- 1.011 

- 1.590 
- 1.314 
+ 0.457 

2.175 

3.842 
5.780 
7.017 

13.70 

Fc Fo 
4.449% 36-2s-f 
0.7787 65.06 
1.254 55.08 
1.932 43.99 

1.845 36.47 
1.228 30.36 
0.5726 25.25 
0.3174 22-86 

0.1794 21.15 
0.0868 19.49 
0.0508 18.52 
1.578-2 13.70 

TABLE 6 

Inside parabola - 
Fdi Fi 

4.655% 36.2s-k 
0.1461 63.76 
0.4050 53.30 
1.415 42.55 

2.939 37.31 
4.476 33.70 
4.987 28.63 
3.952 24.00 

+ 1.740 18.68 
- 3.082 10.45 
- 8.341 + 3.06 
- 14.19) - 14.laf 

6. Conclusion 
The integral solution requires a suitable path of integration to exist for the 

integrals (108), (109). The function X - ~ - ~ ( T )  is regular in 9~ < - B, and $ - T - l ( ~ )  is 
regular in 9~ < 2. The integral (105) for U*(r)  converges at s = 0 provided 
5 % ’ ~  > - 2 in general, and 5 % ’ ~  > - f in the symmetrical case; the integral (103) for 
K * ( T )  converges for 9 r  > - 1 if the curvature is finite at s = 0. For the case of a 
parabolicsurface the integral for U*(T) converges as s -+ 00 provided 9 r  < 0 in the 
case of external flow, and provided 9 r  < -4 for internal flow; that for K*(T)  

converges if BT < 8. Thus in each case there is a strip of the r plane within which 
the path of integration may be drawn. The series solution for small s may be 
recovered by considering the residues at  the poles of U*(T) and K*(T)  to the left 
of the path; the asymptotic behaviour for large s depends on the singularities of 
the integrands to the right. 

For the outside flow the first singularity to the right is that of ~ - ~ - ~ ( q )  at 
T =  -4,sothatass-tco 

$do - u3 - t)  8) lim {(T + $1 x - A 7 ) 1  
7+-& 

This result follows also from considering the variation of Glauert’s integral when 
s -+ 00 and represents an effective change of origin of the wall jet due to the per- 
turbation by the outer flow. For the inside flow the strip in the r plane is bounded 
to the right by the requirement of convergence of U*(r) as s+co and hence 
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from (169) and (94). The integral for $c converges in - 1 < 2% < 4 since the first 
singularity of $.-7-l(q) is at  T = $. Thus 

It follows from these results that as s-+co, $a 9 $f > $c for both external 
and internal flow, and the series solution for small s makes ~f 9 $c 9 $a in 
symmetrical flow and $f $L‘d > $c in asymmetrical flow, as s -+ 0. The results 
proved for s+co are special to the case of a parabolic surface, though the 
inequalities are probably of wider application. The main conclusion to be drawn 
is that for the wall jet the effect of the curvature terms in (22) to (24) is less 
important than that of the displacement flow appearing in the boundary con- 
dition (26). 

Finally, it should be noted that for flow inside the parabola the solution must 
fail when s = O(R2), since then the boundary-layer thickness becomes comparable 
with the channel width and the velocity of the second-order outer flow is com- 
parable with that in the first-order boundary layer. The second-order skin friction 
is negative for s > 80 and the flow may separate when s = O(R2), but the present 
method of analysis does not seem able to decide this point since it requires 
Glauert’s solution to be a valid first approximation. These difficulties do not 
arise in the case of flow outside the parabola.? 

We are very grateful to Dr Ian Gladwell of the Mathematics Department, 
Manchester University for programming the early computations and for advice 
with the later ones. These computations were made on the Atlas computer at  
ManChester University. We are obliged to a referee for the references to papers in 
the A.I.A.A. Journal. 

Appendix 
Wygnanski & Champagne 

surface on the equations 
1968) based their study of the wall jet on a curved 

If these equations are expanded in powers of R-4 they agree to terms O(R-4) with 
Van Dyke’s first- and second-order boundary-layer equations, but differ in 

t Note added in proof: After this paper had been accepted, a referee sent us copies of 
a paper to  be published by Plotkin (1971), which treats a wall jet on the outside of a 
parabola by numerical integration of the second-order boundary layer equations. Plotkin’s 
calculations were confined to the region 0 < 8 < 1.5, and his results for the effect of 
curvature on the skin friction agree well with ours. The displacement effect is not com- 
parable, since Plotkin considered a one-sided wall jet with flow in the positive direction 
only. He did not investigate the resultant boundary layer in the region 8 < 0, but this 
appears not to influence the flow in s > 0 to O(R-4). 
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terms O(R-l). Wygnanski & Champagne sought a similarity solution of equations 
(A 1)  to (A 3) in the form 

9 = s)f(q),  7 = $s-%n, K = @s%, (A 4)  

and obtained, assuming that u-t 0 as n+m, 

with the boundary conditions 

f(0) = f ’ ( O )  =f‘(m) = 0. (A 6) 

For k = 0, (A 5) reduces to Glauert’s equation (9). Following Glauert, multiply 
(A 5) by f and integrate from 0 to 7. Then 

(A 7) 
Sincef’(oo) = 0, either k = 0 or 

This condition is satisfied when k = 0 and f is Glauert’s function since then 

and 

For general values of k we obtain similarly from (A 5)  

and (A 8) becomes, using (A 7) to eliminatefy‘, 

som (-ff”-f‘”+kF)d?l= 0, 

where 

(A 9) 
Hence iff(7) satisfies (A 5) and (A 6) with k =i= 0 

Par] = 0. 
/Om 
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Now if as k - t  O , f ( q )  +fo(q) wherefo(T) is Glauert's function, then F -+ F, where 

After some calculation, 

+~1/3+910g3-% > 0.6. (A 12) 
+ (n+ 3,/3log 3)2 

40 

Consequently (A 5) has no solution, subject to the conditions (A B ) ,  that tends to 
Glauert's function as k - t  0. 

The third-order boundary-layer equations are 

@ln @3ns + @2n+2ns + +3n @Ins - +ls(@Snn + ~ $ 2 n  - K"@ln) 

- @2s(@2nn + K@ln)  - @3s $Inn 

= - ~ 3 s  + @annn + ~ n + % n n n  + - K2+ln + @lssn, (A 13) 
- @ln@lss-  2 ~ @ 1 n @ 2 n  + $18 @Ins = - P 3 n -  ~ n ~ 2 n -  +Inns, (A 14) 

where U3 = $3n, V3 + KnV2  = - $zs. (A 15) 
The forcing terms in these equations may be classified into (i) products of second- 
order terms, (ii) (curvature) x (first-order) x (second-order), (iii) (curvature)z x 
(first-order), (iv) first-order terms. 

The fourth type is omitted when Murphy's (1953) equations for the boundary 
layer on a curved surface are expanded in powers of R-5 but all the others are 
included. We may also divide the solution of equations (A 13) to (A 15) into 
various contributions, one of which comprises the terms quadratic in the curva- 
ture, and we may seek a solution for this quadratic curvature effect in the joint- 
similarity case by writing 

K = aks-e, $3cc = k 2 s ~ w ( q ) .  (A 16) 

It may be shown that if w ( 0 )  = w'(0)  = 0, then 

~ ' ( c o )  = 11 - 6 log 3 - 2n/,/3 = 0,781. (A 17) 

This result ex.plains why it is inappropriate to look for a similarity solution of 
equations (A 1) to (A 3), or those of Murphy, in the form (A 4) with u-f 0 as n+m. 
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